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In preliminary work we have observed an enhancement of the 
ChI a water photolysis rate on addition of an equimolar amount 
of /3-carotene in the Pt/Chl a sample. Independent identifi­
cation of these products by gas chromatography and micro­
wave spectroscopy are underway. Recently Somorjai et al.23 

described the UV-light-assisted photosynthesis reaction of CO2 
and H2O adsorbed on SrTiO3 crystals in contact with Pt foils. 
The visible-light photosynthesis reaction described in this work 
is relevant to the current interest in solar conversion and energy 
storage.24 
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A Method for Determining the Spatial Distribution 
of Spin-Labeled Organic Ligands Covalently Bound 
to a Noncrystalline Surface: Dipolar Contribution 
to Nitroxide EPR Spectrum 

Sir: 

There is a considerable current interest in the chemistry of 
organic ligands covalently attached to noncrystalline surfaces. 
Consequently there is a need for the development of methods 
for the chemical characterization of these modified surfaces. 
Where it is necessary to determine merely the composition or 
structure of the surface-bound ligands, techniques such as 
Auger, ESCA, EPR, laser Raman, and IR spectroscopy may 
be useful; however none of these has been used to determine 
the distribution of ligands on a noncrystalline surface.1 In 
addition, with most of these techniques, the bulk substance is 
not transparent; so application to porous materials is impos­
sible. The design of any experiment in which it is desired to 
prevent the interaction between ligands covalently bound to 
an organic polymer or an inorganic surface requires that the 
ligand distribution be known or assumed.2 We report here that 
the contribution from dipolar coupling to the EPR line width 
from a nitroxide spin-labeled organic ligand, measured under 
conditions where molecular motion is slow, can give ligand-
ligand distances and distributions on a modified silica sur­
face.3 

Controlled-Pore glass,4 a commercially available amorphous 
inorganic support composed of microporous 96% silica, was 
derivatized with 3-aminopropyl ligands by absorption from 
degassed aqueous alkaline solutions of freshly hydrolyzed 3-
aminopropyltrimethoxysilane followed by drying and curing5 

to yield6 1. Samples of 1 having different surface concentra­
tions7 of ligand, PNH2>

 w e r e prepared. It was not possible to 
bind more organic ligand to the surface than would be required 
to form one molecular layer; the highest PNH2 obtained was 3.9 
± 0.2 nrrr2. 

Spin labeling of 1 was achieved by reductive alkylation using 
an excess of 2,2,6,6-tetramethyl-4-oxopiperidine-l-oxyl (2) 
with sodium cyanoborohydride in methanol. The spin-labeled 
product, 3, after washing, gave an EPR spectrum characteristic 

2 , NhNCBH, 
24hr MtOH 

of a partially immobilized nitroxide. Release of mobile ni­
troxide was seen only under conditions which caused the dis­
solution of the silica surface itself (e.g., immersion in 0.1 M 
NaOH); in contrast the Schiff base analogue of 3, prepared 
analogously omitting the cyanoborohydride, hydrolyzed 
readily under mild aqueous conditions liberating mobile ni­
troxide. From these and other observations, it was established 
that 3 had the structure shown. That each 3-aminopropyl group 
was indeed covalently bonded to the surface will be shown 
below. 

The surface density of nitroxides, PSL, was determined by 
EPR double integration. Within the accuracy of determination 
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Figure 1. Plot of EPR double integral vs. mean nearest-neighbor distance 
7 (obtained from dipolar broadening) for 3 under methanol at 77 K. The 
theoretical curves a-e are discussed in the text. The error bars indicate 
the precision of measurement of d\jd and the double integrals. 

of PNH2- it
 w a s found that, when PNH 2

 w a s 'ow> monoalkylation 
was complete. However, when PNH 2

 w a s n'8n> monoalkylation 
was incomplete based on 1; the maximum PSL obtained, 1.5 
nm - 2 , was consistent with a single molecular layer of nitroxide 
moieties close packed in two dimensions. 

There are a number of possible methods for determining 
spin-spin distances. If the orientations of the spin-spin vectors 
arc random with respect to the magnetic field and the rates of 
molecular reorientation and electron and 14N spin-lattice re­
laxation are slow, the contribution to the line width from di­
polar coupling is a function of the microscopic spin-spin dis­
tances. If the spins are dilute, this dipolar broadening arises 
almost entirely from nearest-neighbor couplings. On the other 
hand, trivially, the EPR double integral is a macroscopic 
quantity dependent only upon the average ligand density and 
independent of the spatial distribution. Thus, a comparison of 
nearest-neighbor distances (obtained from dipolar broadening) 
with the EPR double integral should indicate whether the li­
gand distribution deviates from randomness.8 

The spectral parameter9 d \ /d was used as a measure of di­
polar broadening. It is a linear function both of the intrinsic 
line width (i.e., that part not due to A and g anisotropy) and 
of the concentration of homogeneous frozen methanol solutions 
of 2 below 250 mmol L - 1 . From the latter dependence, the 
relationship between d\jd and 7, the mean nearest-neighbor 
distance, was found. 

In Figure 1 is shown a plot10 for 3 under methanol ofr (ob­
tained from d\jd at 77 K) against the EPR double integral. 
The theoretical curves represent (a) spins randomly distributed 
in three dimensions throughout the entire pore volume (0.65 
m L g - 1 ) of the sample; (b) spins, associated with an effective 
molecular a rea" of 0.5 nm2, randomly distributed over the 
entire measured surface area (2.17 X 10 2 0 nm 2 g - ' ) ; (c) same 
as (b), but only half the surface was available for spin labeling; 
(d) same as (b), but nitroxides have zero molecular area; (e) 
spins, having an effective molecular area of 0.5 nm2, distributed 
in patches of closely packed ligand. Clearly hypothesis b, 
random two-dimensional distribution with correlation by 
molecular volume, agrees well with the data. The deviation 
from (b) at high psi. probably arises from our neglect of non-
nearest-neighbor dipolar couplings (there are proportionally 
more of these in three than in two dimensions). Since this de­
viation is in the direction of high 7, it is unlikely to reflect a 
deviation from randomness. Hypothesis e, which corresponds, 
for example, to a model in which the 3-aminopropyl ligands 
do not bind covalently to the surface but exist in patches of 
tightly adsorbed oligosiloxane so that d\/d is insensitive to PSL 
is clearly excluded. 

The high sensitivity of EPR spectroscopy, combined with 
the ready availability of methods for spin labeling a wide va­
riety of organic functionality, promises to ensure that this 

technique has widespread applicability. Studies on other sur­
faces including cellulose and biological membranes are in 
progress in this laboratory. 
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Sequential Oscillations in Mixed-Substrate 
Belousov-Zhabotinskii Systems 

Sir: 

The Belousov-Zhabotinskii (BZ) reaction1 is the most 
thoroughly characterized of the known nonbiological oscil­
lating chemical reactions.2 A large number of organic sub­
strates3,4 have been found to give rise to oscillations when 
combined with appropriate metal catalysts and concentrations 
of bromate and sulfuric acid in the BZ reaction. Different 
substrates produce a considerable variation in such features 
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Figure 1. Oscillations in a mixed MA-AA system. Initial concentrations: 
[H2SO4], 0.93 M; [KBrO3], 0.07 M; [MnSO4], 0.017 M, [AA], 0.015 
M; [MA], 0.035 M. Note the shoulders and color changes described in 
the text. 

0002-7863/79/1501-3698S01.00/0 © 1979 American Chemical Society 


